Atomic Energy Commission of Syria

 
   

  Medicine

 

Sat 13 June. Hybrid scanner combines five molecular imaging technologies. Scientists are taking medical imaging research and drug discovery to a new level by developing a molecular imaging system that combines several advanced technologies for all-in-one imaging of both tissue models and live subjects. Each imaging technology has its own strengths. Direct positron imaging is a nuclear medicine technique that allows researchers to gain physiological information from radiolabeled imaging agents that bind to targets in the body, which are then imaged with a specialized detector. The hybrid system applies both conventional and hyperpolarized MRI. The former is ideal for soft-tissue contrast, and the latter has extremely fine imaging resolution due to a revolution in the technology called dynamic nuclear spin polarization (DNSP), which is used to track minute biochemistry in the body -- such as the transition of the naturally occurring chemical pyruvate to lactate. More

 

  Physics

 

Mon 18 May 2015. First Proton Collisions at World's Largest Science Experiment Should Start in Early June. The LHC at CERN in Geneva was restarted last Aplril for its second three-year run after a two-year pause to upgrade the machine to operate at higher energies. At higher energy, physicists worldwide expect to see new discoveries about the laws that govern our natural universe. The world's largest particle accelerator, the Large Hadron Collider made headlines when its global collaboration of thousands of scientists in 2012 observed a new fundamental particle, the Higgs boson. After that, the collider was paused for the extensive upgrade. Much more powerful than before, as part of Run 2 physicists on the Large Hadron Collider's experiments are analyzing new proton collision data to unravel the structure of the Higgs. More

 

  Physics

 

Wed 25 Mar 2015. Researchers have shed new light on the fundamental mechanisms of heat dissipation in graphene and other two-dimensional materials. They have shown that heat can propagate as a wave over very long distances. This is key information for engineering the electronics of tomorrow. In the race to miniaturize electronic components, researchers are challenged with a major problem: the smaller or the faster your device, the more challenging it is to cool it down. One solution to improve the cooling is to use materials with very high thermal conductivity, such as graphene, to quickly dissipate heat and thereby cool down the circuits. Researchers have demonstrated that heat propagates in the form of a wave, just like sound in air. This was up to now a very obscure phenomenon observed in few cases at temperatures close to the absolute zero.Their simulations provide a valuable tool for researchers studying graphene, whether to cool down circuits at the nanoscale, or to replace silicon in tomorrow's electronics. More

 

  Chemistry

 

Tue 24 Mar 2015. Chemists develop new way to make cost-effective material for electricity storage. Researchers wanted to find a better way to make coatings that can be painted onto surfaces to conduct electricity or convert electricity into hydrogen fuels. Typically these coatings are developed in extreme conditions with expensive tools and materials. But the researchers developed a technique that allows them to use a consumer grade heat lamp to get the same results. A solution is painted onto a surface and once heated up, it transforms into a catalytic coating. These coatings can be used in a range of technologies, such as flexible electronic devices or to convert electricity into hydrogen fuels. The discovery could have implications for clean energy technologies. More

 

نشرة أخبار التقانة الحيوية
نشرة الوقاية الإشعاعية وأمان المصادر المُشعّة
  بحث في الموقع
 
www.scirus.com

Arab Radiation Protection Association

 

 

 
Locations of visitors to this page
 

 

 

 

 

Copyright © 2005 - AECS - Damascus - Syria - Webmaster: smiso@aec.org.sy

 0 Visits Since 26/12/2004

Hits Stats

Last Updated :